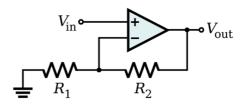

Fundamental Operational Amplifier (Op-Amp) Circuits

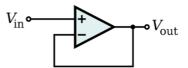
Inverting Amplifier

Notice that the input is fed to the inverting (negative) terminal of the Op-Amp. An inverted sinusoidal output signal has a 180° phase shift with the input signal.


$$V_{\rm out} = \frac{-R_f}{R_{\rm in}} V_{\rm in}$$

Non-inverting Amplifier

Notice that the input is fed to the non-inverting (positive) terminal of the Op-Amp.

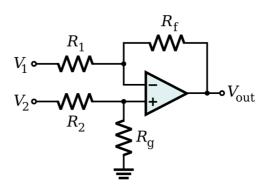

$$V_{\rm out} = \left(1 + \frac{R_2}{R_1}\right) V_{\rm in}$$

Voltage Follower (unity buffer amplifier)

This circuit can be thought of as a non-inverting amplifier where $R_2 = 0$ Ω and $R_1 = \infty \Omega$.

$$V_{\rm out} = V_{\rm in}$$

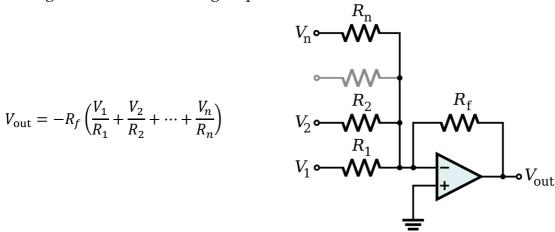
Differential Amplifier (difference amplifier) (subtraction)


Amplifies the voltage difference between the two inputs.

When

$$\frac{R_f}{R_1} = \frac{R_g}{R_2}$$

We have

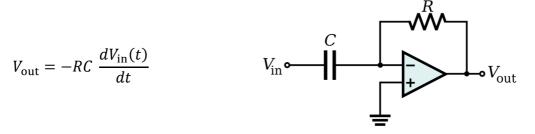

$$V_{\rm out} = \frac{R_f}{R_1} (V_2 - V_1)$$

1

Summing Amplifier (Adder)

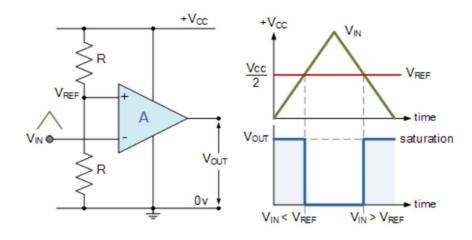
This circuit can have two, three or any number n of input signals. It can also be re-designed with non-inverting amplifier.

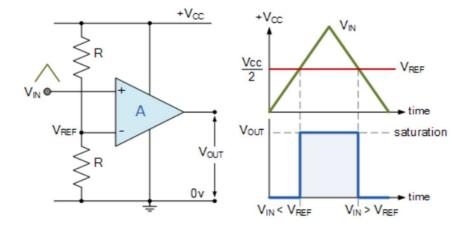
Inverting Integrator

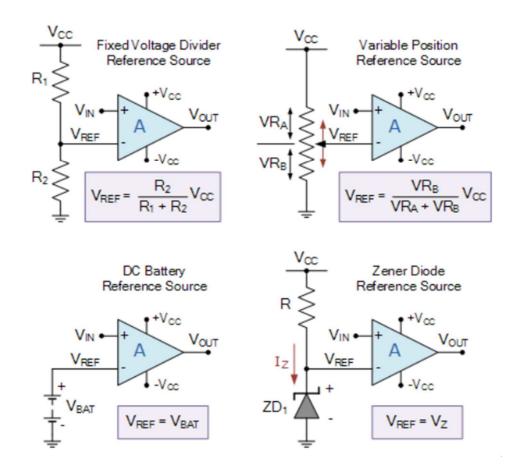

Can also be designed with non-inverting amplifier.

$$V_{\text{out}}(t_1) = V_{\text{out}}(t_0) - \frac{1}{RC} \int_{t_0}^{t_1} V_{\text{in}}(t) dt$$

$$V_{\text{out}}(\omega) = \frac{-1}{j\omega RC} V_{\text{in}}(\omega)$$


Inverting Differentiator


Can also be designed with non-inverting amplifier.


Comparator

Can be designed as inverting or non-inverting comparator as shown below:

The reference voltage for the comparator can also be generated using techniques other than a simple voltage divider as shown below:

There are also many other possibilities not shown here.